Войти Регистрация

Зайдите в свой аккаунт

Логин
Пароль
Запомнить меня

Среда, 02 ноября 2016 13:51

Как мы летаем в Солнечной системе? часть 1

Оцените
(2 Голосов)
Гравитационные маневры

    Со времен Кеплера и Ньютона астрономам известно, что в поле тяготения массивного центрального тела движение происходит по классическим траекториям — эллипсам, параболам и гиперболам. Однако современные космические трассы часто сильно отличаются от классических. И порой только благодаря изощренной фантазии навигаторов удается найти нестандартные решения, позволяющие осуществить, казалось бы, невыполнимые космические проекты.

    В начале XX века, когда принципиальная выполнимость космических полетов была научно обоснована, появились первые соображения об их возможных траекториях. Прямолинейный полет от Земли к другой планете энергетически крайне невыгоден. В 1925 году немецкий инженер Вальтер Гоман (Walter Hohmann) показал, что минимальные затраты энергии на перелет между двумя круговыми орбитами обеспечиваются, когда траектория представляет собой «половинку» эллипса, касающегося исходной и конечной орбит. При этом двигатель космического аппарата должен выдать всего два импульса: в перигее и апогее (если речь идет об околоземном пространстве) переходного эллипса. Данная схема широко используется, например, при выведении на геостационарную орбиту. В межпланетных полетах задача несколько осложняется необходимостью учитывать притяжение Земли и планеты назначения соответственно на начальном и конечном участках траектории. Тем не менее полеты к Венере и Марсу выполняются по орбитам, близким к гомановским.


    Пожалуй, первым примером более сложного космонавигационного приема могут служить биэллиптические траектории. Как доказал один из первых теоретиков космонавники Ари Абрамович Штернфельд, они оптимальны для перевода спутника между круговыми орбитами с разным наклонением. Изменение плоскости орбиты — одна из самых дорогих операций в космонавтике. Например, для поворота на 60 градусов аппарату надо добавить такую же скорость, с какой он уже движется по орбите. Однако можно поступить иначе: сначала выдать разгонный импульс, с помощью которого аппарат перейдет на сильно вытянутую орбиту с высоким апогеем. В ее верхней точке скорость будет совсем невелика, и направление движения меняется ценой относительно небольших затрат топлива. Одновременно можно скорректировать и высоту перигея, немного изменив скорость по величине. Наконец, в нижней точке вытянутого эллипса дается тормозной импульс, который переводит аппарат на новую круговую орбиту.
    Этот маневр, называемый «межорбитальным перелетом с высоким апогеем», особенно актуален при запуске геостационарных спутников, которые первоначально выводятся на низкую орбиту с наклонением к экватору, равным широте космодрома, а потом переводятся на геостационарную орбиту (с нулевым наклонением). Использование биэллиптической траектории позволяет заметно сэкономить на топливе.

Гравитационные маневры

    Многие межпланетные миссии при современных технических возможностях просто неосуществимы без обращения к экзотическим навигационным приемам. Дело в том, что скорость истечения рабочего тела из химических ракетных двигателей составляет около 3 км/с. При этом по формуле Циолковского каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической системы. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться к Марсу по гомановской траектории, надо набрать около 3,5 км/с, к Юпитеру — 6 км/с, к Плутону — 8—9 км/с. Получается, что полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. Вот почему 700-килограммовые «Вояджеры» (Voyager) запускались к Юпитеру 600-тонной ракетой «Титан» (Titan IIIE). А если ставится цель выйти на орбиту вокруг планеты, то возникает необходимость брать с собой запас топлива для торможения, и стартовая масса возрастает еще больше.

«Вояджер-2» стартовал раньше «Вояджера-1» и летел медленнее, но благодаря гравитационным маневрам он за 10 лет посетил все планетыгиганты Солнечной системы. Фото: NASA

    Но баллистики не сдаются — для экономии топлива они приспособили ту самую гравитацию, на преодоление которой при старте уходит значительная часть энергии. Гравитационные, или на профессиональном языке пертурбационные маневры практически не требуют расхода топлива. Все что нужно — это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящим для целей миссии положением. Подлетая к небесному телу, космический аппарат под действием его поля тяготения ускоряется или замедляется. Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве «гравитационной пращи», не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца. Таким способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный маневр используется для разгона, а при миссиях к внутренним планетам — напротив, для гашения гелиоцентрической скорости.

ВОЗМУЩЕНИЯ и КОРРЕКЦИИ
    На картинках траектории межпланетных полетов выглядят очень просто: от Земли станция движется по дуге эллипса, дальний конец которой упирается в планету. Эллиптичность орбиты вокруг Солнца диктуется первым законом Кеплера. Рассчитать ее по силам даже школьнику, но если по ней запустить реальный космический аппарат, он промахнется мимо цели на многие тысячи километров. Дело в том, что на движение аппарата помимо Солнца влияет тяготение обращающихся вокруг него планет. Поэтому точно рассчитать, где окажется аппарат спустя месяцы, а то и годы полета, можно только сложным численным моделированием. Задаются начальное положение и скорость аппарата, определяется, как относительно него расположены планеты и какие силы действуют с их стороны. По ним рассчитывается, где окажется аппарат спустя небольшое время, скажем, спустя час, и как изменится его скорость. Затем цикл вычислений повторяется, и так шаг за шагом просчитывается вся траектория. Скорее всего, она попадет не совсем туда, куда нужно.
    Тогда начальные условия немного меняют и повторяют расчет, пока не будет получен требуемый результат. Но как бы тщательно ни была рассчитана траектория, ракета не сможет идеально точно вывести на нее аппарат. Поэтому с самого начала рассчитывается целый пучок слегка расходящихся траекторий — изогнутый конус, внутри которого аппарат должен оказаться после старта. Например, при полете к Венере отклонение начальной скорости от расчетной всего на 1 м/с обернется у цели промахом в 10 000 километров — больше размера планеты. Поэтому уже во время полета параметры движения аппарата уточняются по телеметрическим данным (скорость, например, до миллиметров в секунду), а затем в расчетный момент включаются двигатели и орбиты корректируются.
    Коррекции тоже не бесконечно точны, после каждой из них аппарат попадает в новый конус траекторий, но они не так сильно расходятся у точки назначения, поскольку часть пути уже пройдена. Если у цели аппарату предстоит гравитационный маневр, это повышает требования к точности навигации. Например, при пролете в 10 000 километрах от той же Венеры ошибка в навигации на 1000 километров приведет к тому, что после маневра станция собьется с курса примерно на градус. Исправить такое отклонение коррекционным двигателям, скорее всего, окажется не под силу. Еще жестче требования к точности навигации при использовании аэродинамического торможения в атмосфере. Ширина коридора составляет всего 10—20 километров. Пройди аппарат ниже — и он сгорит в атмосфере, а выше — ее сопротивления не хватит, чтобы погасить межпланетную скорость до орбитальной. К тому же расчет таких маневров зависит от состояния атмосферы, на которую влияет солнечная активность. Недостаточное понимание физики инопланетной атмосферы тоже может оказаться фатальным для космического аппарата.
На рис.:
1. Расходящийся конус траекторий — следствие погрешностей выведения космического аппарата.
2. Последствия ошибки при гравитационном маневре

    Впервые идею гравитационного маневра высказали Фридрих Артурович Цандер и Юрий Васильевич Кондратюк еще в 1920—1930-х годах. Официально считается, что впервые подобный маневр выполнила в 1974 году американская станция «Маринер-10» (Mariner 10), которая, пролетев вблизи Венеры, направилась к Меркурию. Впрочем, первенство американцев оспаривают российские историки космонавтики, считающие первым гравитационным маневром облет Луны, который в 1959 году осуществила советская станция «Луна-3», впервые сфотографировавшая обратную сторону нашего естественного спутника. 
 
Источник http://galspace.spb.ru/orbita/12.htm
 

Поделитесь ссылкой

Просмотров 117
Добавить комментарий
Обновить

Группа Вконтакте

Сайт Руслана Стрельцова

Сайт создал Дмитрий Новоселецкий


Яндекс.Метрика

05-11-2016 Hits:10 Вселенная и жизнь Дмитрий Стрельцов

10 вопросов, - 0 внятных ответов

10 ТАЙН, НАД КОТОРЫМИ НАУКА ЛОМАЕТ ГОЛОВУ ПРЯМО СЕЙЧАС... Наука стремится охватить и описать весь мир, сделать неизвестное известным и...

Подробнее

04-11-2016 Hits:36 Сатурн Дмитрий Стрельцов

Космические треки, перстни гиганта.

Кольца и полукольца Сатурна     Начиная с открытия Галилеем колец Сатурна этот удивительный феномен привлекал внимание и поэтов, и ученых. Тем более...

Подробнее

03-11-2016 Hits:39 Уран Дмитрий Стрельцов

Лежебока Уран

Уран - вокруг Солнца "лежа на боку"   Открытие колец Урана       У Урана есть слабо выраженная система колец, состоящая из очень тёмных частиц...

Подробнее

02-11-2016 Hits:81 Космические аппараты Дмитрий Стрельцов

КАК МЫ ЛЕТАЕМ В СОЛНЕЧНОЙ СИСТЕМЕ? ЧАСТЬ…

Юпитер нам поможет     Многие межпланетные зонды использовали для разгона тяготение Юпитера. Первыми были аппараты «Пионер-10» и «Пионер-11» (Pioneer), а вслед за...

Подробнее

02-11-2016 Hits:118 Космические аппараты Дмитрий Стрельцов

Как мы летаем в Солнечной системе? часть…

Гравитационные маневры     Со времен Кеплера и Ньютона астрономам известно, что в поле тяготения массивного центрального тела движение происходит по классическим траекториям...

Подробнее

12-04-2016 Hits:5618 Космонавты Дмитрий Стрельцов

День космонавтики и курьёзы

Сегодня в России отмечается День космонавтики. 12 апреля 1961 года Советский Союз вывел на орбиту Земли космический корабль-спутник «Восток» с...

Подробнее

01-04-2016 Hits:1063 Юпитер Дмитрий Стрельцов

По следам падения. Юпитер.

Дорогой читатель! Буквально на днях астрономами любителями было зафиксировано падение объекта на Юпитер. Это третье "громкое" падение на гигант. Первое...

Подробнее

26-03-2016 Hits:1080 Марс Дмитрий Стрельцов

Обзор фотографий, марсианские сумерки.

Обзор фотографий, марсианские сумерки.Друзья, предлагаю вашему вниманию несколько панорам марсианских сумерек. Для начала нужно вспомнить что такое сумерки и какова...

Подробнее

05-03-2016 Hits:1983 Космические аппараты Дмитрий Стрельцов

Путей много, цель одна: Космос.

Путей много, цель одна: Космос.   Вам не нужна ракета, чтобы покинуть Землю. Есть более мягкий и нежный способ путешествия — и коктейль...

Подробнее

04-03-2016 Hits:1635 Венера Дмитрий Стрельцов

Жизнь, кажется, нашли. Но не там, где ис…

Жизнь, кажется, нашли. Но не там, где искали Доктор физико-математических наук Леонид Ксанфомалити, Институт космических исследований РАН. Анализ поведения обнаруженных...

Подробнее

04-03-2016 Hits:1091 Венера Дмитрий Стрельцов

Жизнь, кажется, нашли. Но не там, где ис…

Жизнь, кажется, нашли. Но не там, где искали Доктор физико-математических наук Леонид Ксанфомалити, Институт космических исследований РАН. Следуя некоторым видам поиска...

Подробнее

21-02-2016 Hits:1039 Изучение космоса Дмитрий Стрельцов

Конец Солнца и Самость Космоса Часть 2

Конец Солнца и Самость Космоса Часть 2   6. Картина катастрофы Органическое человечество будет ощущать свою смерть как космическую катастрофу. Катастрофа здесь...

Подробнее

21-02-2016 Hits:1183 Изучение космоса Дмитрий Стрельцов

Конец Солнца и Самость Космоса Часть 1

Константин Елькин   Конец СолнцаиСамость Космоса Часть перваяКонец Солнцаиего системы По материалам Свободной энциклопедии – Википедия.   “…даже небольшое изменение в температуре нашего Солнца должно было...

Подробнее

21-02-2016 Hits:641 Изучение космоса Дмитрий Стрельцов

Магнетизм космоса: Магнитные поля

Магнетизм космоса: Магнитные поля Обычно магнитные поля ассоциируют с планетами и звездами. Но и у галактик такие поля тоже имеются Алексей Левин 18 октября 2010 21203 Магнитные поля изрядно...

Подробнее

21-02-2016 Hits:822 Простая наука Дмитрий Стрельцов

Астрофотография вчера, сегодня, завтра.

Астрофотография «Черно-белая эпоха» Все нижеприведенные фотографии отпечатаны с негативов на увеличителе «Беларусь-912». Отпечатки отсканированы.К сожалению, качество сканера оставляет желать лучшего. Многие отпечатки...

Подробнее

21-02-2016 Hits:778 Простая наука Дмитрий Стрельцов

Астрофотография в каждый дом

Астрофотография в каждый дом   Думаю у любого человека, интересующегося космосом — возникала идея купить телескоп, чтобы лично все посмотреть. ...

Подробнее

21-02-2016 Hits:635 Простая наука Дмитрий Стрельцов

Искусство астрофотографии

  ТАЛ-3: ПЕРВЫЙ ЭТАП МОДЕРНИЗАЦИИ   Весной 2000г. мне довелось приобрести телескоп ТАЛ-3 новосибирского производства. К сожалению, этот 200-мм инструмент системы Максутова-Кассегрена в...

Подробнее

21-02-2016 Hits:599 Черные дыры Дмитрий Стрельцов

Космические надсмотрщики средней весовой…

  Космические надсмотрщики средней весовой категории. Изучение черных дыр среднего размера, массой чуть меньше миллиона солнечных масс, возможно, даст ключ к пониманию...

Подробнее

29-01-2016 Hits:713 Вселенная и жизнь Дмитрий Стрельцов

Не первая Вселенная? Циклическая теория.

  ЦИКЛИЧЕСКАЯ ТЕОРИЯ     ТЕОРИЯ БОЛЬШОГО ВЗРЫВА ПОЛЬЗУЕТСЯ ДОВЕРИЕМ АБСОЛЮТНОГО БОЛЬШИНСТВА УЧЕНЫХ, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет...

Подробнее

29-01-2016 Hits:1020 Основы астрономии Дмитрий Стрельцов

ИСТОРИЯ ТЕЛЕСКОПОВ

ИСТОРИЯ ТЕЛЕСКОПОВ     Ровно 400 лет назад Галилео Галилей, разработавший особый способ шлифовки линз специально для астрономических наблюдений, создал первый телескоп. В...

Подробнее

29-01-2016 Hits:974 Изучение космоса Дмитрий Стрельцов

Секунды пробуждения.

НОВОРОЖДЕННАЯ ВСЕЛЕННАЯ     БОЛЬШАЯ ЧАСТЬ МАТЕРИИ ВО ВСЕЛЕННОЙ НАХОДИТСЯ В "ЧЕТВЕРТОМ СОСТОЯНИИ ВЕЩЕСТВА". НО ТАК БЫЛО НЕ ВСЕГДА.     Основное прибежище плазмы на...

Подробнее

27-01-2016 Hits:1063 Галактики Дмитрий Стрельцов

Спринтеры космоса. САМЫЕ БЫСТРЫЕ В ГАЛАК…

САМЫЕ БЫСТРЫЕ В ГАЛАКТИКЕ     Мы пока не можем полететь даже к ближайшим звездам. Что уж говорить о более далеких путешествиях. Вряд...

Подробнее

27-01-2016 Hits:963 Галактики Дмитрий Стрельцов

Космический огород. Галактики.

ГАЛАКТИКИ     ИСТОРИЯ ИЗУЧЕНИЯ ПЛАНЕТ И ЗВЕЗД ИЗМЕРЯЕТСЯ ТЫСЯЧЕЛЕТИЯМИ, СОЛНЦА, КОМЕТ, АСТЕРОИДОВ И МЕТЕОРИТОВ - СТОЛЕТИЯМИ. А ВОТ ГАЛАКТИКИ, РАЗБРОСАННЫЕ ПО ВСЕЛЕННОЙ...

Подробнее

27-01-2016 Hits:913 Изучение космоса Дмитрий Стрельцов

Гипотеза Инфляции

ИНФЛЯЦИЯ     ОДИН ИЗ ФРАГМЕНТОВ ПЕРВОЙ МИКРОСЕКУНДЫ ЖИЗНИ ВСЕЛЕННОЙ СЫГРАЛ ОГРОМНУЮ РОЛЬ В ЕЕ ДАЛЬНЕЙШЕЙ ЭВОЛЮЦИИ     Концептуальный прорыв стал возможным благодаря очень...

Подробнее

27-01-2016 Hits:769 Изучение космоса Дмитрий Стрельцов

ТАМ НА НЕВЕДОМЫХ ДОРОЖКАХ. ГОРИЗОНТ ВСЕЛ…

ГОРИЗОНТ ВСЕЛЕННОЙ     В СЛОВАРЕ, ИЗДАННОМ В 1910 ГОДУ, ГОРИЗОНТ ОПРЕДЕЛЯЛСЯ КАК «ОКРУЖНОСТЬ КРУГА... ДАЛЬШЕ КОТОРОГО НИЧЕГО НЕ ВИДНО». НО ЗА ПРОШЕДШИЙ...

Подробнее