Войти Регистрация

Зайдите в свой аккаунт

Логин
Пароль
Запомнить меня

Среда, 02 ноября 2016 14:09

КАК МЫ ЛЕТАЕМ В СОЛНЕЧНОЙ СИСТЕМЕ? ЧАСТЬ 2

Оцените
(2 Голосов)
Юпитер нам поможет


    Многие межпланетные зонды использовали для разгона тяготение Юпитера. Первыми были аппараты «Пионер-10» и «Пионер-11» (Pioneer), а вслед за ними «Вояджер-1» и «Вояджер-2». В 1992 году Юпитер помог выйти из плоскости эклиптики «Улиссу» (Ulysses) — зонду, исследующему полярные области Солнца, вокруг которого он обращается по орбите, почти перпендикулярной земной. Другим способом вывести аппарат на такую орбиту при современном уровне развития космической техники просто невозможно. Выполнил пертурбационный маневр у Юпитера и зонд «Новые горизонты» (New Horizons), запущенный Соединенными Штатами к Плутону 19 января 2006 года. Увеличив скорость на 4 км/с и на 2,5 градуса отклонившись от плоскости эклиптики, он сможет прибыть к цели в 2015 году, прежде чем на Плутоне (который в этом столетии удаляется от Солнца) станет замерзать атмосфера, снижая тем самым ценность будущих исследований.
    Разумеется, для выполнения гравитационных маневров дата старта должна быть выдержана весьма точно. Баллистики оперируют понятием «окно запуска» — это интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна. Ближе к краям «окна» эффект становится меньше, а потребности в топливе — больше. Если же выйти за его границы, то носитель просто не сможет вывести аппарат на нужную орбиту, что приведет к срыву полета или недопустимому возрастанию его длительности. Например, запуск «Новых горизонтов» неоднократно переносился по погодным и техническим причинам. Задержись старт еще на несколько дней, и зонд отправился бы в полет уже без расчета на «гравитационную помощь» Юпитера и с меньшими шансами на успех. Выполнять маневры у планет-гигантов удобнее всего. Благодаря их большой массе поворачивать возле них можно по широкой плавной дуге и требования к точности навигации остаются довольно мягкими. Однако нередко в качестве «пращи» используют Венеру, Землю, Марс и даже Луну. Тут уже ошибаться нельзя, в противном случае аппарат уйдет от планеты совсем не в том направлении, как было запланировано.

Зонд ISEE-3/ICE четыре года (1978—1982) изучал Солнце с орбиты вокруг точки Лагранжа L1, а затем путем сложных гравитационных маневров у Земли и Луны он был направлен на встречу с кометами Джакобини — Циннера (1985) и Галлея (1986). В 2012-м зонд вернется к Земле. Рис. NASA
Окном запуска называют интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна.
Гомановские эллипсы, касающиеся орбиты Земли и планеты назначения, - самые экономичные межпланетные траектории, если не прибегать к гравитационным маневрам. Полет к Марсу по гомановской орбите занимает около 240-280 суток, к Венере - около 150 суток.

Космический гравсерфинг


    Наиболее сложны — но тем и интересны! — траектории с пертурбационными маневрами не у одного, а у нескольких небесных тел. К примеру, станция «Галилео» (Galileo), чтобы добраться до Юпитера, осуществила гравитационный маневр в поле тяготения Венеры, а потом еще два возле Земли. Такие полеты возможны не всегда, а лишь при определенном расположении планет. Самый знаменитый подобный «большой тур» совершил «Вояджер-2», который последовательно пролетел вблизи Юпитера, Сатурна, Урана и Нептуна. Его близнец «Вояджер-1» тоже мог бы пройти подобным маршрутом, однако ученые предпочли поближе рассмотреть загадочный спутник Сатурна Титан, и его тяготение необратимо отклонило траекторию станции от направления на Уран. Это было трудное, но верное решение. Именно данные «Вояджера-2» позволили спустя 24 года осуществить посадку на Титан зонда «Гюйгенс» (Huygens).
    В наши дни еще более сложный полет выполняет станция «Мессенджер» (MESSENGER). Ее основная задача — выход на орбиту вокруг Меркурия для детального изучения его характеристик. Миссия, рассчитанная на семь лет пути, в январе 2008 года вышла на заключительный этап. Аппарат уже выполнил четыре гравитационных маневра: один около Земли, два возле Венеры и один у самого Меркурия, а между ними производились маневры двигателями, чтобы каждый раз правильно входить в гравитационную «воронку» планеты. «Мессенджеру» предстоит совершить еще пять маневров (два гравитационных и три — двигателями), прежде чем он станет спутником ближайшей к Солнцу планеты. За это время он «намотает» вокруг Солнца 8 миллиардов километров — больше, чем до Плутона! Однако, не будь траектория столь сложной, при современном состоянии ракетно-космической техники этот полет вообще не мог бы состояться.

ЛЕСТНИЦА ЛАГРАНЖА
    Несмотря на коррекции и гравитационные маневры, орбиты большинства межпланетных станций все же близки к классическим дугам эллипсов и гипербол. Но в последнее время астронавигаторы все чаще используют куда более изощренные траектории, пролегающие в тех областях пространства, где приходится в равной мере учитывать притяжение сразу двух небесных тел.
    Рассмотрим, например, орбиту Земли вокруг Солнца. Она почти круговая с радиусом 150 миллионов километров и периодом обращения, равным году. Соотношение радиуса и периода определяется силой солнечного притяжения, заставляющей Землю двигаться по искривленной траектории. На большем расстоянии притяжение Солнца окажется слабее, а соответствующая орбитальная скорость ниже. Космический аппарат на такой орбите отстает от Земли (а на орбите меньшего радиуса обгоняет ее). Математически это выражается третьим законом Кеплера. Однако из этого правила есть исключение. Допустим, мы запустили станцию так, чтобы она пришла в некую точку, расположенную на продолжении земной тени, причем на строго определенном расстоянии от Земли (примерно полтора миллиона километров). Тогда притяжение нашей планеты, добавленное к солнечному, окажется как раз таким, что период обращения по расширенной орбите будет в точности равен году. Получится, что станция как бы все время прячется от Солнца позади Земли. Аналогичная траектория есть и внутри земной орбиты, где притяжение планеты, наоборот, ослабляет солнечное ровно настолько, чтобы на более короткой орбите период обращения был равен году. На таких орбитах станции будут обращаться вокруг Солнца, оставаясь неподвижными относительно Земли, — в направлении к Солнцу и от него. Это так называемые точки Лагранжа L1 и L2, где космический аппарат может неподвижно висеть, не расходуя топлива. Этим уже пользуются: в L1 работает солнечная обсерватория SOHO, а в L2 — астрофизический зонд WMAP. Туда же планируется вывести 6-метровый телескоп имени Джеймса Вебба, который строится на смену стареющему «Хабблу».
    Но полеты в точках Лагранжа не лишены трудностей. Дело в том, что равновесие в них неустойчиво. Стоит аппарату немного отклониться из-за возмущений со стороны других планет или погрешностей навигации, как он начинает описывать вокруг точки Лагранжа медленно расходящиеся петли. Если вовремя не скорректировать орбиту, аппарат может быть выброшен в космос или даже упасть на Землю. Рассчитать движение по такой траектории очень трудно: она очень сильно «крутит хвостом» — при малейшей ошибке в начальных условиях может повернуться в противоположном направлении.
    И все же NASA уже удалось воспользоваться такой сложной орбитой для миссии по сбору образцов солнечного ветра. Аппарат «Генезис» (Genesis) был запущен по тончайшим образом выверенной траектории, которая после нескольких витков вокруг точки L1 вернула его к Земле, причем так, что капсула с образцами по касательной вошла в атмосферу и совершила посадку (к сожалению, жесткую из-за сбоя в парашютной системе). А у навигаторов тем временем зреют новые планы. Среди раскручивающихся траекторий ухода от точки L1 есть такие, которые на время приводят аппарат на орбиту вокруг L2 (и наоборот). Причем для этого не требуется серьезных затрат топлива. У Земли пользы от этого немного. Иное дело — система Юпитера, где у каждого из четырех его больших спутников — Ио, Европы, Ганимеда и Каллисто — есть по паре точек Лагранжа. Двигаясь вокруг планеты, внутренние спутники обгоняют внешние, и если правильно подгадать, то ценой совсем небольших затрат топлива аппарат может перепрыгнуть с неустойчивой орбиты вокруг точки L2, скажем, спутника Ио на такую же орбиту вокруг точки L1 Европы. Покрутившись там и проведя наблюдения, можно подняться еще на одну ступеньку «лестницы» — к точке L2 Европы, а оттуда в нужный момент прыгнуть к L1 Ганимеда, а там и до Каллисто рукой подать. Спускаться по этой «лестнице Лагранжа» тоже не возбраняется.
    Именно такой план полета предлагается для большой исследовательской станции JIMO, которую NASA готовит для изучения галилеевых спутников Юпитера. До сих пор спутники Юпитера исследовались только с пролетных траекторий. «Лестница Лагранжа» позволит станции подолгу зависать над спутником — изучать его поверхность и отслеживать происходящие на ней процессы.

С малой тягой к малым телам


    Но гравитационные маневры — не единственный способ сэкономить топливо. Еще в 1930-х годах один из пионеров отечественного ракетного двигателестроения Валентин Петрович Глушко предложил использовать электроракетные двигатели (ЭРД). По сравнению с традиционными жидкостными ракетными двигателями (ЖРД) скорость истечения рабочего тела у них на порядок выше, а значит, топлива требуется в сотни раз меньше. К сожалению, тяга ЭРД исчисляется величинами порядка нескольких граммов-силы, так что для вывода аппаратов на орбиту они не годятся. Это «двигатели открытого космоса», предназначенные для медленного, но непрерывного ускорения, длящегося месяцы, а при межпланетных полетах и годы. «Миссии с малой тягой» стали популярны лишь тогда, когда электроника, сделав гигантский скачок, позволила увеличить срок службы космических аппаратов с нескольких месяцев до нескольких лет, а то и десятилетий.


    Трасса полета с малой тягой совсем не похожа на классический эллипс, она представляет собой медленно разворачивающуюся спираль Архимеда. Переход с низкой околоземной орбиты на геостационарную по такой траектории затягивается на полгода. Это поистине пытка для владельца спутника, продающего услуги космической связи: каждый день ожидания обходится в десятки тысяч долларов. Приходится учитывать и такое неприятное обстоятельство, как многократный пролет через радиационные пояса Земли. Тонкая электроника очень не любит космических излучений. Но зато спутник, оснащенный ЭРД, можно запустить на геостационарную орбиту ракетой «Союз» (300 тонн), а для аппарата с обычным ЖРД уже нужен могучий «Протон» (700 тонн). Разница в стоимости запуска — в два-три раза. Вот и ломает голову заказчик космического аппарата: какой вариант выбрать? Обычно все же останавливаются на том, что быстрее: современные спутники связи начинают «отбивать» затраченные на их запуск деньги уже через пару недель после выведения на целевую орбиту. Так что в околоземном пространстве двигатели малой тяги применяют в основном для небольших коррекций орбиты.
    Другое дело — полеты, скажем, к астероидам. ЭРД позволят относительно легко перекидывать межпланетную станцию с одного объекта к другому, причем не просто пролетать мимо, а подолгу задерживаться у каждого. По причине своей ничтожной (по сравнению с планетами) массы астероиды обладают мизерной гравитацией. Их облет мало похож на обычное орбитальное движение вокруг больших планет. Орбитальные скорости здесь измеряются сантиметрами в секунду, а периоды — многими сутками. Чтобы облететь астероид быстрее, приходится почти постоянно «работать двигателями». Стоит их выключить, и аппарат просто улетит от планетоида. Но зато практически полное отсутствие гравитации позволяет садиться на поверхность астероида и взлетать с него при минимальных затратах топлива.
    По большому счету слово «посадка» здесь можно употреблять лишь условно: причаливание межпланетного зонда к астероиду больше напоминает стыковку двух космических кораблей, нежели классическую посадку на поверхность планеты. Этот фокус проделывали японцы со своим зондом «Хаябуса», который дважды опускался на поверхность астероида Итокава и поднимался с нее. Кстати, этот же полет показал, насколько непросто управлять аппаратом вблизи поверхности астероида. Обмен сигналами с аппаратом занимает десятки минут, так что отдавать ему команды в реальном времени невозможно, несмотря на небольшие скорости. Поэтому отработка автономной навигации вблизи неровной поверхности астероида была одной из основных задач «Хаябусы».
    Стартовавший в сентябре 2007 года к астероидам Церере и Весте американский зонд «Заря» (Dawn) оснащен ионными двигателями с тягой меньше одной десятой Ньютона (вес 10-гранного груза). За сутки работы они ускоряют аппарат массой около тонны на 25 км/ч. Это не так мало, как может показаться: за год подобными темпами можно набрать 2,5 км/с. Полного же запаса топлива на борту (425 килограммов) хватит для изменения скорости аппарата на 10 км/с — никаким межпланетным аппаратам с химическими двигателями подобное недоступно.


Планетарные двигатели


    Попробуем пофантазировать и представим, что наконец-то решено отправить экипаж, состоящий из людей, скажем, в систему Сатурна. Можно выбрать быстрый перелет с большой тягой: собрать межпланетный корабль на околоземной орбите, выдать при помощи ЖРД мощный разгонный импульс и по гиперболе отправиться в путешествие. Лететь все равно придется долго — несколько лет. Масса топлива нужна огромная. А значит, для снаряжения гигантского корабля потребуется не один десяток сверхтяжелых ракет. Запасы кислорода, воды, пищи и всего, что нужно в межпланетном полете, теряются на фоне огромной массы топлива, необходимого не только для разгона у Земли, но и для торможения у цели путешествия, и для возвращения к родной планете…


    А что если попробовать малую тягу? Безумное количество топлива существенно сократится, а срок путешествия, как ни странно, может остаться прежним! Ведь двигатели корабля будут работать всю дорогу — полпути на разгон, а полпути — на торможение. Правда, тягу электрореактивных двигателей придется увеличить в сотни раз по сравнению с теми, что стоят на зонде «Заря». Но во-первых, такие разработки уже ведутся, а во-вторых, двигателей может быть много.
    Для питания ЭРД понадобится несколько мегаватт энергии. Вблизи Земли ее можно было бы получать даром — от огромных солнечных батарей площадью тысячи, если не десятки тысяч квадратных метров. Но с удалением от Солнца их эффективность быстро падает: у Марса — на 60%, у Юпитера — в 30 раз. Так что для полетов к планетам-гигантам придется использовать ядерный реактор. И еще, скорее всего, ЖРД все-таки понадобятся для того, чтобы быстрее пройти опасные радиационные пояса вблизи Земли. Видимо, именно комбинированные двигательные установки будут применяться в межпланетных пилотируемых миссиях будущего.


Не только гравитация


    Дальний космос таит в себе немало загадок. Казалось бы, что может быть точнее баллистических расчетов, в основе которых лежат законы небесной механики? Не тут-то было! На космический зонд действует множество сил, которые трудно учесть заранее. Давление солнечного излучения и солнечный ветер, магнитные поля планет и истечение газа из самого аппарата — все это сказывается на скорости его движения. Даже тепловое излучение зонда и радиосигнал, посылаемый на Землю узконаправленной антенной, вызывают отдачу, которую приходится учитывать при точной навигации. А то что происходило с уже упоминавшимися «Пионерами», вообще не получило пока должного объяснения. Работающий в NASA российский астрофизик Вячеслав Турышев обнаружил около 10 лет назад, что зонды испытывают очень небольшое аномальное торможение. За 20 лет полета аномалия «Пионеров» привела к тому, что, подлетая к границам Солнечной системы, космические аппараты отклонились от расчетного положения на 400 тысяч километров! Какие только гипотезы не выдвигались для объяснения аномалии. От уже упомянутых магнитных полей и испарения остатков топлива из топливных магистралей до наличия на границах Солнечной системы массивных невидимых объектов. Некоторые физики считают аномалию указанием на неточность современной теории гравитации, другие видят в ней проявление космологических факторов вроде темной материи и темной энергии. Исчерпывающего объяснения пока нет, а группа Турышева продолжает обрабатывать данные о полете «Пионеров». Как бы то ни было, при проектировании новых траекторий межпланетных полетов придется учитывать возможность подобных неожиданных явлений.

Станция «Кассини» и траектория ее движения в системе Сатурна. Рис. NASA/ESA


    В общем, работа космического баллистика балансирует на грани искусства и точных наук. Ему всегда приходится решать задачу со многими неизвестными, усугубленную стремлением заказчика сделать все «быстрее и дешевле», не выходя за рамки физических законов. Так что, несомненно, мы еще станем свидетелями рождения многих новых нетривиальных космических траекторий.

Авторы статьи: Игорь Афанасьев, Дмитрий Воронцов 
 
Источник http://galspace.spb.ru/orbita/12.htm

Поделитесь ссылкой

Просмотров 82
Добавить комментарий
Обновить

Группа Вконтакте

Сайт Руслана Стрельцова

Сайт создал Дмитрий Новоселецкий


Яндекс.Метрика

05-11-2016 Hits:11 Вселенная и жизнь Дмитрий Стрельцов

10 вопросов, - 0 внятных ответов

10 ТАЙН, НАД КОТОРЫМИ НАУКА ЛОМАЕТ ГОЛОВУ ПРЯМО СЕЙЧАС... Наука стремится охватить и описать весь мир, сделать неизвестное известным и...

Подробнее

04-11-2016 Hits:36 Сатурн Дмитрий Стрельцов

Космические треки, перстни гиганта.

Кольца и полукольца Сатурна     Начиная с открытия Галилеем колец Сатурна этот удивительный феномен привлекал внимание и поэтов, и ученых. Тем более...

Подробнее

03-11-2016 Hits:39 Уран Дмитрий Стрельцов

Лежебока Уран

Уран - вокруг Солнца "лежа на боку"   Открытие колец Урана       У Урана есть слабо выраженная система колец, состоящая из очень тёмных частиц...

Подробнее

02-11-2016 Hits:83 Космические аппараты Дмитрий Стрельцов

КАК МЫ ЛЕТАЕМ В СОЛНЕЧНОЙ СИСТЕМЕ? ЧАСТЬ…

Юпитер нам поможет     Многие межпланетные зонды использовали для разгона тяготение Юпитера. Первыми были аппараты «Пионер-10» и «Пионер-11» (Pioneer), а вслед за...

Подробнее

02-11-2016 Hits:118 Космические аппараты Дмитрий Стрельцов

Как мы летаем в Солнечной системе? часть…

Гравитационные маневры     Со времен Кеплера и Ньютона астрономам известно, что в поле тяготения массивного центрального тела движение происходит по классическим траекториям...

Подробнее

12-04-2016 Hits:5618 Космонавты Дмитрий Стрельцов

День космонавтики и курьёзы

Сегодня в России отмечается День космонавтики. 12 апреля 1961 года Советский Союз вывел на орбиту Земли космический корабль-спутник «Восток» с...

Подробнее

01-04-2016 Hits:1063 Юпитер Дмитрий Стрельцов

По следам падения. Юпитер.

Дорогой читатель! Буквально на днях астрономами любителями было зафиксировано падение объекта на Юпитер. Это третье "громкое" падение на гигант. Первое...

Подробнее

26-03-2016 Hits:1080 Марс Дмитрий Стрельцов

Обзор фотографий, марсианские сумерки.

Обзор фотографий, марсианские сумерки.Друзья, предлагаю вашему вниманию несколько панорам марсианских сумерек. Для начала нужно вспомнить что такое сумерки и какова...

Подробнее

05-03-2016 Hits:1983 Космические аппараты Дмитрий Стрельцов

Путей много, цель одна: Космос.

Путей много, цель одна: Космос.   Вам не нужна ракета, чтобы покинуть Землю. Есть более мягкий и нежный способ путешествия — и коктейль...

Подробнее

04-03-2016 Hits:1635 Венера Дмитрий Стрельцов

Жизнь, кажется, нашли. Но не там, где ис…

Жизнь, кажется, нашли. Но не там, где искали Доктор физико-математических наук Леонид Ксанфомалити, Институт космических исследований РАН. Анализ поведения обнаруженных...

Подробнее

04-03-2016 Hits:1091 Венера Дмитрий Стрельцов

Жизнь, кажется, нашли. Но не там, где ис…

Жизнь, кажется, нашли. Но не там, где искали Доктор физико-математических наук Леонид Ксанфомалити, Институт космических исследований РАН. Следуя некоторым видам поиска...

Подробнее

21-02-2016 Hits:1039 Изучение космоса Дмитрий Стрельцов

Конец Солнца и Самость Космоса Часть 2

Конец Солнца и Самость Космоса Часть 2   6. Картина катастрофы Органическое человечество будет ощущать свою смерть как космическую катастрофу. Катастрофа здесь...

Подробнее

21-02-2016 Hits:1183 Изучение космоса Дмитрий Стрельцов

Конец Солнца и Самость Космоса Часть 1

Константин Елькин   Конец СолнцаиСамость Космоса Часть перваяКонец Солнцаиего системы По материалам Свободной энциклопедии – Википедия.   “…даже небольшое изменение в температуре нашего Солнца должно было...

Подробнее

21-02-2016 Hits:641 Изучение космоса Дмитрий Стрельцов

Магнетизм космоса: Магнитные поля

Магнетизм космоса: Магнитные поля Обычно магнитные поля ассоциируют с планетами и звездами. Но и у галактик такие поля тоже имеются Алексей Левин 18 октября 2010 21203 Магнитные поля изрядно...

Подробнее

21-02-2016 Hits:822 Простая наука Дмитрий Стрельцов

Астрофотография вчера, сегодня, завтра.

Астрофотография «Черно-белая эпоха» Все нижеприведенные фотографии отпечатаны с негативов на увеличителе «Беларусь-912». Отпечатки отсканированы.К сожалению, качество сканера оставляет желать лучшего. Многие отпечатки...

Подробнее

21-02-2016 Hits:778 Простая наука Дмитрий Стрельцов

Астрофотография в каждый дом

Астрофотография в каждый дом   Думаю у любого человека, интересующегося космосом — возникала идея купить телескоп, чтобы лично все посмотреть. ...

Подробнее

21-02-2016 Hits:635 Простая наука Дмитрий Стрельцов

Искусство астрофотографии

  ТАЛ-3: ПЕРВЫЙ ЭТАП МОДЕРНИЗАЦИИ   Весной 2000г. мне довелось приобрести телескоп ТАЛ-3 новосибирского производства. К сожалению, этот 200-мм инструмент системы Максутова-Кассегрена в...

Подробнее

21-02-2016 Hits:599 Черные дыры Дмитрий Стрельцов

Космические надсмотрщики средней весовой…

  Космические надсмотрщики средней весовой категории. Изучение черных дыр среднего размера, массой чуть меньше миллиона солнечных масс, возможно, даст ключ к пониманию...

Подробнее

29-01-2016 Hits:713 Вселенная и жизнь Дмитрий Стрельцов

Не первая Вселенная? Циклическая теория.

  ЦИКЛИЧЕСКАЯ ТЕОРИЯ     ТЕОРИЯ БОЛЬШОГО ВЗРЫВА ПОЛЬЗУЕТСЯ ДОВЕРИЕМ АБСОЛЮТНОГО БОЛЬШИНСТВА УЧЕНЫХ, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет...

Подробнее

29-01-2016 Hits:1020 Основы астрономии Дмитрий Стрельцов

ИСТОРИЯ ТЕЛЕСКОПОВ

ИСТОРИЯ ТЕЛЕСКОПОВ     Ровно 400 лет назад Галилео Галилей, разработавший особый способ шлифовки линз специально для астрономических наблюдений, создал первый телескоп. В...

Подробнее

29-01-2016 Hits:974 Изучение космоса Дмитрий Стрельцов

Секунды пробуждения.

НОВОРОЖДЕННАЯ ВСЕЛЕННАЯ     БОЛЬШАЯ ЧАСТЬ МАТЕРИИ ВО ВСЕЛЕННОЙ НАХОДИТСЯ В "ЧЕТВЕРТОМ СОСТОЯНИИ ВЕЩЕСТВА". НО ТАК БЫЛО НЕ ВСЕГДА.     Основное прибежище плазмы на...

Подробнее

27-01-2016 Hits:1063 Галактики Дмитрий Стрельцов

Спринтеры космоса. САМЫЕ БЫСТРЫЕ В ГАЛАК…

САМЫЕ БЫСТРЫЕ В ГАЛАКТИКЕ     Мы пока не можем полететь даже к ближайшим звездам. Что уж говорить о более далеких путешествиях. Вряд...

Подробнее

27-01-2016 Hits:963 Галактики Дмитрий Стрельцов

Космический огород. Галактики.

ГАЛАКТИКИ     ИСТОРИЯ ИЗУЧЕНИЯ ПЛАНЕТ И ЗВЕЗД ИЗМЕРЯЕТСЯ ТЫСЯЧЕЛЕТИЯМИ, СОЛНЦА, КОМЕТ, АСТЕРОИДОВ И МЕТЕОРИТОВ - СТОЛЕТИЯМИ. А ВОТ ГАЛАКТИКИ, РАЗБРОСАННЫЕ ПО ВСЕЛЕННОЙ...

Подробнее

27-01-2016 Hits:913 Изучение космоса Дмитрий Стрельцов

Гипотеза Инфляции

ИНФЛЯЦИЯ     ОДИН ИЗ ФРАГМЕНТОВ ПЕРВОЙ МИКРОСЕКУНДЫ ЖИЗНИ ВСЕЛЕННОЙ СЫГРАЛ ОГРОМНУЮ РОЛЬ В ЕЕ ДАЛЬНЕЙШЕЙ ЭВОЛЮЦИИ     Концептуальный прорыв стал возможным благодаря очень...

Подробнее

27-01-2016 Hits:769 Изучение космоса Дмитрий Стрельцов

ТАМ НА НЕВЕДОМЫХ ДОРОЖКАХ. ГОРИЗОНТ ВСЕЛ…

ГОРИЗОНТ ВСЕЛЕННОЙ     В СЛОВАРЕ, ИЗДАННОМ В 1910 ГОДУ, ГОРИЗОНТ ОПРЕДЕЛЯЛСЯ КАК «ОКРУЖНОСТЬ КРУГА... ДАЛЬШЕ КОТОРОГО НИЧЕГО НЕ ВИДНО». НО ЗА ПРОШЕДШИЙ...

Подробнее